Fatigue fracture of tough hydrogels
نویسندگان
چکیده
منابع مشابه
Fatigue fracture of hydrogels
Rapid advances are taking place to develop hydrogels of high stretchability and toughness, but fatigue fracture has not been studied for any hydrogels. This negligence hinders the development of hydrogels and their applications. Herewe initiate a study of fatigue fracture of hydrogels.We choose polyacrylamide hydrogel as a model material. To place fatigue fracture in context, we apply monotonic...
متن کاملFracture Mechanics Fatigue of Double - Network Hydrogels
The discovery of tough hydrogels of many chemical compositions, and their emerging applications in medicine, clothing, and engineering, has raised a fundamental question: How do hydrogels behave under many cycles of stretch? This paper initiates the study of the fatigue behavior of the classic PAMPS/PAAM double network hydrogels discovered by Gong and her co-workers (Advanced Materials 15, 1155...
متن کاملFiber-reinforced tough hydrogels
Using strong fibers to reinforce a hydrogel is highly desirable but difficult. Such a composite would combine the attributes of a solid that provides strength and a liquid that transports matter. Most hydrogels, however, are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. Here we circumvent this problem by using a recently developed tough hydrogel. We fabr...
متن کاملExceptionally tough and notch-insensitive magnetic hydrogels.
Most existing magnetic hydrogels are weak and brittle. The development of strong and tough magnetic hydrogels would extend their applications into uncultivated areas, such as in actuators for soft machines and guided catheters for magnetic navigation systems, which is still a big challenge. Here a facile and versatile approach to fabricating highly stretchable, exceptionally tough and notch-ins...
متن کاملElectrically conductive, tough hydrogels with pH sensitivity
Electrically conductive, mechanically tough hydrogels based on a double network (DN) comprised of poly(ethylene glycol) methyl ether methacrylate (PPEGMA) and poly(acrylic acid) (PAA) were produced. Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically polymerized within the tough DN gel to provide electronic conductivity. The effects of pH on the tensile and compressive mechanical properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Extreme Mechanics Letters
سال: 2017
ISSN: 2352-4316
DOI: 10.1016/j.eml.2017.07.002